Tuesday, December 24, 2024

The Complete Guide To Umvue

一般来说:第一步:寻找充分完备统计量:充分性(Sufficient):利用Fisher-Neyman Factorization Theorem寻找充分统计量T,然后证明其完备性;完备性(Complete):如果随机变量是指数分布族的话,并且参数 \theta\in \Theta\subset \mathbb{R}^{k} , \Theta 包含一个在 \mathbb{R}^{k} 的开集,那么可以利用指数分布族的定理证T的完备性。如果不是的话,利用完备性的定义证明:\mathbf{E}_{\theta}g(T) = 0 \text{ for all }\theta\in\Theta,\text{ then } P_{\theta}[g(T)=0]=1(某个套路:求出T的概率分布,然后假设一个符合上述条件的函数g,写出 \mathbf{E}_{\theta}g(T) ,然后对 \theta 求导,证其导数为0,从而证出g(T)=0 a. Web.

Assuming

q

t

, and using Lemma 1,

θ

^

=

1

q

f

X

1

|

i

=

1

n

X

i

(

x

1

|

t

)

d

x

1

|

t

=

i

=

1

n

X

i

=

1

q

t

Γ

(

n

k

)

Γ

(

n

k

k

)

Γ

(

k

)

(

t

x

1

)

n

k

k

1

x

1

k

1

t

n

k

1

d

x

1

|

t

=

i

=

1

n

X

i

=

1

Γ

(

n

k

)

Γ

(

n

k

k

)

Γ

(

k

)

t

n

k

1

q

t

(

t

x

1

)

n

k

k

1

x

1

k

1

d

x

1

|

t

=

i

=

1

n

X

i

=

1

Γ

(

n

k

)

Γ

(

n

k

k

)

Γ

(

k

)

t

n

k

1

(

n

k

k

1

)

!

(

k

1

)

!

j

=

1

(

k

1

)

+

1

(

t

q

)

(

n

k

k

1

)

Read Full Report

+

j

q

(

k

1

)

j

+

1

(

(

n

k

k

1

)

+

j

)

!

(

(

k

1

)

j

+

1

)

!

|

t

=

i

=

1

n

X

i

=

1

Γ

(

n

k

)

t

n

k

1

j

=

1

k

(

t

q

)

n

k

k

1

+

j

q

k

j

Γ

(

n

k

k

+

j

)

Γ

(

k

j

+

1

)

|

t

=

i

=

1

n

X

i

=

1

(

t

q

t

)

n

k

1

j

=

1

k

Γ

(

n

k

)

Γ

(

n

k

k

+

j

)

Γ

(

k

j

+

1

)

(

q

t

q

)

k

j

|

t

=

i

=

1

n

X

i

=

1

(

i

=

1

n

X

i

q

i
this link

=

1

n

X

i

)

n

k

1
Clicking Here

j

=

1

k

(

n

k

1

)

!

(

n

k

k

+

j

1

)

!

(

k

j

)

!

(

q

i

=

1

n

X

i

q

)

k

j

=

1

(

i

=

1

n

X

i

q

i

=

1

n

X

i

)

n

k

1

j

=

1

k

(

n

k

1

visite site

k

j

)

(

q

i

=

1

n

X

i

q

)

k

j

. .